ASA S3-SC1 WG4

A Computational Engine for Bringing Environmental Consequence Analysis into Aviation Decision-Making

Cyndy Lee, Aaron Hastings, John McDonald, Chris Scarpone Environmental Measurement & Modeling Division Center of Innovation for Environmental and Energy Systems

Serving the Nation as a leader in global transportation innovation since 1970

21 April 2010

ORITA John A. Volpe National Transportation Systems Center U.S. Department of Transportation

Ambient Masking of Non-natural Sounds

	Temporal Distribution	Frequency Content	Spectral Balance	Sound Pressure Level
Stronger Masking Potential	Continuous	Broadband	Low Frequencies	High
Weaker Masking Potential	Intermittent	Tonal	High Frequencies	Low

John A. Volpe National Transportation Systems Center

U.S. Department of Transportation Research and Innovative Technology Administration

A-weighted Sound Pressure Level vs. Time

- Pre/Post-masking is not very effective
- A masking sound that is continuous over the signal event is a better masker
- A masker that is continuous over a long period is more likely to coincide with a signal event
- Do ½ second and hourly LAeqs effectively account for these effects?

John A. Volpe National Transportation Systems Center U.S. Department of Transportation Research and Innovative Technology Administration

Frequency Content

- Masking most effective when the masker spectrum overlaps the signal spectrum; more likely to occur if the masker is broadband in nature
- Land vehicles tend to be dominated by broadband spectra
- Aircraft can have both broadband spectra and tonal components
- Animal sounds often dominated by tonal components
- Wind and water sounds often have broad frequency content

John A. Volpe National Transportation Systems Center U.S. Department of Transportation Research and Innovative Technology Administration

Spectral Balance

- Off-frequency masking is most effective if masker is at a lower frequency than signal
- Animal sounds often dominated by high frequencies
- Wind and water sounds often have somewhat evenly distributed frequency content
- Aircraft/land vehicles tend to be dominated by low to mid frequencies

John A. Volpe National Transportation Systems Center U.S. Department of Transportation Research and Innovative Technology Administration

1/3 Octave

40

20

0

1/3 Octave Band Center Frequency

B407 - 94 kts

Comparison of Loudness Spectra

Comparison of Loudness Spectra

Sound Pressure Level

- As level of masker increases, it masks more signal
 - Signal-to-noise ratios decrease
 - Upward and downward spread of masking increases

John A. Volpe National Transportation Systems Center

U.S. Department of Transportation Research and Innovative Technology Administration